Cambridge O Leve

Cambridge International Examinations
General Certificate of Education Ordinary Level

STATISTICS
4040/02
Paper 2
For Examination from 2018
SPECIMEN MARK SCHEME
2 hours 15 minutes

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier, asterisked, mark in the scheme.

The notation 'ft' implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only.

Abbreviations

AG answer given on question paper
awrt answer which rounds to
cao correct answer only
dep dependent
ft follow through after error
oe or equivalent
SC special case
soi seen or implied
www without wrong working

Question	Answer	Marks
1(a)	sectional/component/composite bar chart	B1
1 (b)	discrete quantitative	B1
1 1(c)	3 as numerator or 11 as denominator of probability	M1
	$3 / 11$ or awrt 27\% (accept '3 out of 11' or '3 in 11') (S.C. B1 for 3:8 if ratio notation used (do not accept any other ratio))	A1

Question	Answer	Marks
2 2(a)(i)	use of $\mathrm{P}(A) \times P(B)$	M1
	0.03	A1
2(a)(ii)	use of $\mathrm{P}(A)+P(B)-P(A \cap B)$	M1
	0.32	A1
2(b)(i)	0	B1
2(b)(ii)	0.64	B1

Question	Answer	Marks
$3(\mathrm{a})$	stay the same	B1
	decrease	B1
	105% of $12000+200$	M1
	12800	A1
	105% of 1000 only	M1
	1050	A1

Question	Answer	Marks
4(a)	$\mathrm{P}\left(\right.$ cards same/Ariana wins) $=\frac{1}{4}$ oe	B1
	$P($ cards different/Bella wins $)=\frac{3}{4}$ oe ft (1 - their P(cards same))	B1
	$\frac{1}{4} \times 3=\frac{3}{4} \times 1$, show expected winnings equal so it is a fair game (allow follow through of their probabilities (with conclusion of 'fair' or 'unfair' as appropriate))	B1
4(b)	$P(4$ or less/Ariana wins $)=6 / 16=3 / 8$ or $P(5$ or more/Bella wins $)=10 / 16=5 / 8$	M1
	$5 \times$ their $3 / 8=x \times$ their $5 / 8$	M1
	3	A1

Question	Answer	Marks
5(a)	biased/not representative or too small	B1
	more detail about why biased such as will contain people who want/catch a bus at 7 am (e.g. workers, school children...)	B2
5(b)	$15,08,00,31,52,47$ (-1 each independent error/omission)	B1
5(c)(i)	$2,3,1$	B1
5(c)(ii)	the different age groups are likely to want buses at different times (some mention of the potential connection between people's ages and when they might want a bus)	

Question	Answer	Marks
$6(\mathrm{a})$	$(+/-) 25 \times-9+9 \times 21+(0 \times 2)$	M1
	-36	A1
	$-36 / 36$ leading to 8.59 or 1 min early (do not accept -1$)$	M1
	correct formula for s.d. or var * (even if e.g. 8.59 used for mean, may just be the formula)	M1
	their number of mins late used in the formula dep (this must not be a time and all other values must be correct)	A1
	11.9 (from a correct answer to (a))	(a)

Question	Answer	Marks
7(a)	15 correct values (may be in wrong order)	M1
	attempt to order (allow one error/omission)	M1
	15 correctly ordered values, equally spaced	A1
7(b)	box-and-whisker diagram with: whiskers extending to 158 and 184	B1
	median at 170 marked correctly	B1
	lower quartile at 164, and upper quartile at 177, marked correctly (if 0 scored, 1 mark for correct values of $L Q$, median and UQ seen)	B1
7(c)	boys taller/boys have bigger median oe	B1
	spread/range/IQR similar	B1

Question	Answer	Marks
8(a)	there are extreme values (if these are specified they must be correctly referring to the large masses)/positive skew	M1
	so the median would be better	A1
8(b)	12, 43, 72, 86, 94, 98, 100	B1
8(c)	250 and 450	B1
8(d)	Solution 1 $25^{\text {th }}$ or $25.25^{\text {th }}$ value	M1
	sight of $25-12(=13)$ or $25.25-12(=13.25)$	M1
	250 +	M1
	$\begin{aligned} & \ldots 13 / 31 \times 200 \text { or } 13.25 / 31 \times 200 \\ & \text { (} 333.87 \text { or } 335.48 \text {) } \\ & \text { (dependent on an attempt at both } L Q \text { and UQ) } \end{aligned}$	M1
	$\begin{aligned} & \text { UQ - LQ } \\ & \text { (but not } 75-25 \text {) } \end{aligned}$	M1
	480 or 495 awrt	A1
	OR Solution 2 $75^{\text {th }}$ or $75.75^{\text {th }}$ value	M1
	sight of $75-72(=3)$ or 75.75-72 (= 3.75)	M1
	750 +	M1
	$\begin{aligned} & \ldots 3 / 14 \times 300 \text { or } 3.75 / 14 \times 300 \\ & \text { (} 814.29 \text { or } 830.36 \text {) } \\ & \text { (dependent on an attempt at both LQ and UQ) } \end{aligned}$	M1
	$\begin{aligned} & \mathrm{UQ}-\mathrm{LQ} \\ & \text { (but not } 75-25 \text {) } \end{aligned}$	M1
	480 or 495 awrt	A1
	Available marks for Solution 1 OR Solution 2	6
8(e)	they are less varied oe	B1
8(f)	200/300 $\times 29$ ($=19.3$)	M1
	(some fraction of 29) $+12+31$ (some working must be seen for the fraction of 29 if the value is anything other than 19(.3...))	M1
	62(.3)	A1

SPECIMEN

Question	Answer	Marks
9(a)	$x=168$	B1
	$y=1308$	B1
	$z=218 \mathrm{ft}$ (from their y)	B1
9(b)	because 6 is even	B1
	centring is necessary so that the centred values coincide with original data plots	B1
9(c)	213.5, 215, 215.5, 217, 219.25 (or 219.3), 221.25 (or 221.3) (B1 for 4 correct)	B2
	6 values in the correct places in the table	B1
9(d)	plots at correct points vertically ft	B1
	plots at correct points horizontally	B1
	suitable trend line	B1
9(e)	number of patients increasing	B1
9(f)	attempt at reading from graph (even at wrong place) - 11.25	M1
	correct reading from their graph -11.25 , correctly evaluated and rounded to nearest whole number ft	A1

Question	Answer	Marks
10(a)(i)	256/240 $\times 100$	M1
	107	A1
10(a)(ii)	the cost/price has increased	B1
	by 10\%	B1
	between 2012 and 2014/over the two years	B1
10(a)(iii)	98	B1
10(b)(i)	by using the expenditure/total money spent on each category oe	B1
10(b)(ii)	($7 \times$ their $107+2 \times 110+5 \times$ their 98) *	M1
	$\ldots \div 14$ dep	M1
	104	A1
10(b)(iii)	$\begin{aligned} & 5760 \times \text { their (b)(ii)/100 } \\ & \text { (their (b)(ii) may be an earlier unrounded version) } \end{aligned}$	M1
	5990 ft (ft answer must be to nearest dollar)	A1
10(b)(iv)	two correct reasons e.g.: the quantity of equipment used may have changed the number of employees may have changed the number of hours worked by employees may have changed (award one mark for each correct answer up to a maximum of two marks)	B2

Question	Answer	Marks
11(a)(i)	$60 / 300=1 / 5$ oe	B1
11(a)(ii)	$160 / 300=8 / 15$ oe	B1
11(a)(iii)	$230 / 300=23 / 30$ oe	B1
11(a)(iv)	$40 / 140=2 / 7$ oe	B1
11(b)	$\begin{aligned} & 100 / 300 \times 99 / 299+130 / 300 \times 129 / 299+70 / 300 \times 69 / 299 \\ & n / m \times(n-1) /(m-1) \text { seen somewhere } \end{aligned}$	M1
	the sum of three pairs of products of probabilities (if they consider males and females separately make sure all cases have been considered)	M1
	$315 / 897$ or 105/299 oe or 0.35 or better	A1
11(c)	$(100 / 300 \times 130 / 299 \times 70 / 298) \times 6$ product of three probabilities $\times 6$	M1
	denominator of $300 \times 299 \times 298$	M1
	$54600 / 267306$ or $700 / 3427$ oe or 0.20 or better	A1
11(d)	4, 3, 6	B1
11(e)(i)	$4 \times 100 /(4 \times 100+3 \times 130+6 \times 70)$ numerator of their 4×100 (must be a probability)	M1
	denominator of their $4 \times 100+$ their $3 \times 130+$ their 6×70 (must be a probability)	M1
	$40 / 121$ oe or 0.33 better	A1
11(e)(ii)	$2 \times(100+70)$	M1
	$34 / 121$ oe or 0.28 or better	A1

BLANK PAGE

